

# Switching Technology 

Relays
Solid state relays
High and low current devices
Plug-in relay modules


Systematic Technology

## Reaching new heights in automation




Welcome to Lutze


Suppression technology, module and interface technology, power supplies


Railway engineering and automation


We have been developing and manufacturing electronic and electrical engineering solutions for controls and installations for more than 45 years.

Our basic concept as system suppliers, providing a comprehensive and well-matched product range with which we can generate innovative and customized solutions for our customers, has stood the test of time.

The close relationship between product development and customer requirements allows Lutze continuously to improve and develop our products for the various markets.

Lutze systems comply with the highest industrial standards; Lutze solutions mean improvement and innovation.

Our four product groups include components and concepts suitable for almost any control application. For more information on our products, please visit www.luetze.com.


Systematic Technology

## Interface technology • Contents



| Relay module | chapter 1 |
| :--- | :--- |
| Relay module, closed | Page |
| Relay module, pluggable | $1.1-1.4$ |
| Relay module, pluggable, Microplug | $1.5-1.6$ |
| Relay module with positively driven contact | $1.11-1.12$ |
| PLC output relay module, 32 way | 1.13 |



| Solid state relay | chapter 2 |
| :--- | :--- |
|  | Page |
| Solid state relay - DC output | $2.1-2.10$ |
| Solid state relay - AC/DC output | 2.11 |
| Solid state relay - AC output | $2.12-2.16$ |



Basic principles
chapter 3 Page
Microcompact coupling modules 3.1
Relay modules 3.2
Optocouplers
3.3-3.4

Terminology
3.5-3.8

## Interface Technology • Microcompact Relay Module

## AC/DC-Relay-Interface,1 Relay with 1 CO contact

AC/DC 250 V, 6 A, 1500 VA
Spring terminal, contact material: $\mathrm{AgSnO}_{2}$


| Description |  | Part-No. | Type | PU |
| :---: | :---: | :---: | :---: | :---: |
| Screw terminal |  |  |  |  |
| Rated voltage | DC 12 V | 760020 | RE 6-0020 DC 12 V | 4 |
|  | AC/DC 24 V | 760022 | RE 6-0022 AC/DC 24 V | 4 |
|  | AC/DC 110 V | 760026 | RE 6-0026 AC/DC 110 V | 4 |
|  | AC/DC 230 V | 760027 | RE 6-0027 AC/DC 230 V | 4 |
| Spring terminal |  |  |  |  |
| Rated voltage | AC/DC 24 V | 761022 | RE 6-1022 AC/DC 24 V | 4 |
|  | AC/DC 110 V | 761026 | RE 6-1026 AC/DC 110 V | 4 |
|  | AC/DC 230 V | 761027 | RE 6-1027 AC/DC 230 V | 4 |



PIN assignment



| Input | DC 12 V | AC/DC 24 V | AC/DC 110 V | AC/DC 230 V |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input voltage range | $9.6-15.0 \mathrm{~V}$ | 19.2-30.0 V | 77.0 - 137.5 V | 184.0-253.0 V |  |
| Rated current | 16.0 mA | 22.0 mA | 7.0 mA | 3.5 mA |  |
| Interrupting voltage | $<1.5 \mathrm{~V}$ | $<2.4 \mathrm{~V}$ | 11 V | <23 V |  |
| Protection device | Bridge rectifier |  |  |  |  |
| Rated insulation voltage (EN 50178) |  |  | 150 V | 300 V |  |
| Max. length of connecting lead | - |  |  |  |  |
| Status indication | LED yellow |  |  |  |  |
| Rated frequency | $50-60 \mathrm{~Hz}$ |  |  |  |  |
| Output |  |  |  |  |  |
| Contact type | 1 change over contact |  |  |  |  |
| Min. switching voltage | AC/DC 17 V |  |  |  |  |
| Max. switching voltage | AC/DC 250 V |  |  |  |  |
| Min. switching current | AC/DC 5 mA |  |  |  |  |
| Max. switching current | AC/DC 6 A |  |  |  |  |
| Switching capacity AC 15 | 3 A |  |  |  |  |
| Switching capacity DC 13 | at $24 \mathrm{~V}: 1 \mathrm{~A}$; at $115 \mathrm{~V}: 200 \mathrm{~mA}$; at $230 \mathrm{~V}: 100 \mathrm{~mA}$ |  |  |  |  |
| Max. switching capacity | 1500 VA |  |  |  |  |
| Contact material | $\mathrm{AgSnO}_{2}$ |  |  |  |  |
| Mechanical service life | $>5 \times 10^{7}$ operations |  |  |  |  |
| Switch-on delay | 5 ms |  |  | 10 ms |  |
| Switch-off delay | 5 ms |  |  | 15 ms |  |
| Clearance/creep. dist. (contol/load side) | $>5.5 \mathrm{~mm}$ |  |  |  |  |
| Rated insulation voltage (EN 50178) | 300 V |  |  |  |  |
| Inrush current | $16 \mathrm{~A}, 4 \mathrm{~ms}$ |  |  |  |  |
| General |  |  |  |  |  |
| Housing material | PPE |  |  |  |  |
| IP rating | IP 20 |  |  |  |  |
| Field installation | rail TS 35 (EN 50022) |  |  |  |  |
| Insulation voltage input/output | 4 kVeff |  |  |  |  |
| Safe isolation | yes |  |  |  |  |
| Operation temperature range | $-25^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$ |  |  |  |  |
| Storage temperature range | $-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$ |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $6.2 \times 80.0 \times 84.0 \mathrm{~mm}$ |  |  |  |  |
| Weight (kg/piece) | 0.025 |  |  |  |  |
| Approvals | cULus |  |  |  |  |
| Termination | Screw-/spring terminal $0.25-2.5 \mathrm{~mm}^{2}$ |  |  |  |  |
| Accesories | Colour | Article nu | Type |  | Pkg. units |
| Jumper comb 24pole, 26A | blue | 760801 | BK 6-0801 |  | 5 |
| Tag holder $4 \times 11 \mathrm{~mm}$ | white | 681313 | BZT 0411 |  | 100 |
| Labels for laser printer A4 unpunched |  | 681031 | LEB-A4 |  | 1 |
| Labels for laser printer $4.23 \times 11 \mathrm{~mm}$ (Sheet with 1056 labels) |  | 681034 | LEB 0411 |  | 1 |
| For operation with rated voltage and $100 \%$ ED over $24 \mathrm{~h} /$ day, a distance of $=10 \mathrm{~mm}$ must be complied with between the modules or to the neighboring switching components. |  |  |  |  |  |

## Interface Technology • Microcompact Relay Module

AC/DC-Relay-Interface, 1 Relay with 1 CO contact<br>AC/DC 250 V, 6 A, 1500 VA<br>Screw-/spring terminal, contact material: $\mathrm{AgSnO}_{2}$




## Interface Technology • Microcompact Relay Module

DC-Relay-Interface,1 Relay, 1 CO contact
AC/DC 250 V, 6 A, 1500 VA
Spring terminal, contact material: $\mathrm{AgSnO}_{2} \mathbf{+ 5} \boldsymbol{\mu} \mathrm{mV}$


Dimensions


PIN assignment
DC 24 V , DC $\mathbf{3 6} \mathrm{V}$


| Description |  | Part-No. | Type |
| :--- | :--- | :--- | :--- |


| Input | DC 24 V | DC 36 V | DC 72 V | DC 110 V |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input voltage range | $16.8-30.0 \mathrm{~V}$ | $25.2-45.0 \mathrm{~V}$ | $50.4-90.0 \mathrm{~V}$ | $77.0-137.5 \mathrm{~V}$ |  |
| Rated current | 20.0 mA | 12.0 mA | 3.5 mA | 4.0 mA |  |
| Interrupting voltage | $<2.4 \mathrm{~V}$ | $<3.6 \mathrm{~V}$ | $<7.2 \mathrm{~V}$ | $<11 \mathrm{~V}$ |  |
| Protection device |  | 50 V |  | Bridge rectifier |  |
| Rated insulation voltage (EN 50178) |  |  |  | 100 V | 160 V |
| Max. length of connecting lead |  |  |  | - |  |

Max. length of connecting lead
Status indication
LED yellow
Rated frequency
Contact type 1 change over contact

| Min. switching voltage | AC/DC 1 V |
| :--- | :---: |
| Max. switching voltage | AC/DC 250 V |
| Min. switching current | AC/DC 1 mA |
| Max. switching current | AC/DC 6 A |

Switching capacity AC 153 A

| Switching capacity DC 13 | at $24 \mathrm{~V}: 1 \mathrm{~A}$; at $115 \mathrm{~V}: 200 \mathrm{~mA}$; at $230 \mathrm{~V}: 100 \mathrm{~mA}$ |
| :--- | :---: |
| Max. switching capacity | 1500 VA |
| Contact material | $\mathrm{AgSnO}_{2}+5 \mu \mathrm{mV}$ |

Mechanical service life $\quad>20 \times 10^{6}$ peration

| Switch-on delay | ca. 5 ms |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Switch-off delay | ca. 5 ms |  |  |  |  |  |  |
| Clearance/creep. dist. (contol/load side) | $>5.5 \mathrm{~mm}$ |  |  |  |  |  |  |
| Rated insulation voltage (EN 50178) | 320 V |  |  |  |  |  |  |
| General |  |  |  |  |  |  |  |
| Housing material | PPE |  |  |  |  |  |  |
| IP rating | IP 20 |  |  |  |  |  |  |
| Field installation | rail TS 35 (EN 50022) |  |  |  |  |  |  |
| Insulation voltage input/output | 4 kVeff |  |  |  |  |  |  |
| Safe isolation | yes |  |  |  |  |  |  |
| Operation temperature range | $-25^{\circ} \mathrm{C}-70{ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| Storage temperature range | $-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $6.2 \times 90.0 \times 92.5 \mathrm{~mm}$ |  |  |  |  |  |  |
| Weight (kg/piece) | 0.035 |  |  |  |  |  |  |
| Approvals | cULus in preparation |  |  |  |  |  |  |
| Termination | Spring terminal 0.5-1.5 mm ${ }^{2}$ |  |  |  |  |  |  |
| Accesories | Colour | 2-pole | 3 -pole | 4-pole | 8-pole | 16-pole | Pkg. units |
| Jumper comb 6A | red | 762802 | 762805 | 762812 | 762822 | 762832 | 10 |
| Jumper comb 6A | white | 762803 | 762806 | 762813 | 762823 | 762833 | 10 |
| Jumper comb 6A | blue | 762804 | 762807 | 762814 | 762824 | 762834 | 10 |
| Accesories | Colour |  | Article n |  | Type |  | Pkg. units |
| Tag holder $4 \times 11 \mathrm{~mm}$ | white |  | 681313 |  | BZT 0411 |  | 100 |
| Isolation plate |  |  | 760809 |  | TP 7-0809 |  | 5 |
| Labels for laser printer A4 unpunched |  |  | 681031 |  | LEB - A4 |  | 1 |
| Labels for laser printer $4.23 \times 11 \mathrm{~mm}$ (Sheet with 1056 labels) |  |  | 681034 |  | LEB 0411 |  | 1 |

## Comments

Hard gold-plated contacts: So that the gold layer is not damaged, the specified values are not permitted to be exceeded. At higher switching capacity, the gold layer vaporizes. The deposition in the housing can lead to sparkovers between the coil and contact For operation with rated voltage and $100 \%$ ED over $24 \mathrm{~h} /$ day, a distance of $=10 \mathrm{~mm}$ must be complied with between the modules or to the neighboring switching components.

## Interface Technology • Microcompact Relay Module

DC Relais-Interface, 2 Relay with 1 CO contact
AC/DC 250 V, 6 A, 1500 VA
Spring terminal, contact material: $\mathrm{AgSnO}_{2}$



## Interface Technology • Microcompact Relay Module

## AC/DC-Relay-Interface, 1, Relay with 1 CO contact, pluggable <br> AC/DC 250 V, 6 A, 1500 VA <br> Spring terminal, contact material: $\mathrm{AgSnO}_{2}$



PIN assignment
DC 12 V , DC 24 V


AC/DC 24 V


AC/DC 115 V, AC/DC 230 V



| Description |  | Part-No. | Type |  |  | PU |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Screw terminal |  |  |  |  |  |  |
| Rated voltage | DC 12 V | 760828 | RE 7-08 | 28 DC 12V |  | 5 |
|  | DC 24 V | 760821 | RE 7-082 | 21 DC 24 V |  | 5 |
|  | AC/DC 24 V | 760822 | RE 7-08 | 22 AC/DC 24 V |  | 5 |
|  | AC/DC 115 V | 760826 | RE 7-08 | 26 AC/DC 115 V |  | 5 |
|  | AC/DC 230 V | 760827 | RE 7-08 | 27 AC/DC 230 V |  | 5 |
| Spring terminal |  |  |  |  |  |  |
| Rated voltage | DC 12 V | 761828 | RE 7-18 | 28 DC 12V |  | 5 |
|  | DC 24 V | 761821 | RE 7-182 | 21 DC 24 V |  | 5 |
|  | AC/DC 24 V | 761822 | RE 7-18 | 22 AC/DC 24 V |  | 5 |
|  | AC/DC 115 V | 761826 | RE 7-18 | 26 AC/DC 115 V |  | 5 |
|  | AC/DC 230 V | 761827 | RE 7-18 | 27 AC/DC 230 V |  | 5 |
|  |  |  |  |  |  |  |
| Input | DC 12 V | DC 24 V | AC/DC 24 V | AC/DC 115 V | AC/DC 230 V |  |
| Input voltage range | 10.2 -15.0 V | $20.4-30.0 \mathrm{~V}$ | $16.8-30.0 \mathrm{~V}$ | $92.0-126.5 \mathrm{~V}$ | 184.0-253.0 V |  |
| Rated current | 15.0 mA | 14.0 mA | 21.0 mA | 5.0 mA |  |  |
| Interrupting voltage | <2 V | $<2.4 \mathrm{~V}$ |  | $<11 \mathrm{~V}$ | < 23 V |  |
| Protection device | Bridge rectifier | Reverse diode |  | Bridge rectifier |  |  |
| Rated insulation voltage (EN 50178) |  | Reverse diode |  | 150 V | 250 V |  |
| Max. length of connecting lead | 2000 m |  | $\begin{aligned} & \text { DC: } 2000 \mathrm{~m} \\ & \text { AC: } 100 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \text { DC: } 500 \mathrm{~m} \\ & \text { AC: } 70 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \text { DC: } 500 \mathrm{~m} \\ & \text { AC: } 40 \mathrm{~m} \end{aligned}$ |  |
| Status indication | LED yellow |  |  |  |  |  |
| Rated frequency | - |  | $50-60 \mathrm{~Hz}$ |  |  |  |
| Output | - |  |  |  |  |  |
| Contact type | 1 change over contact |  |  |  |  |  |
| Min. switching voltage | AC/DC 17 V |  |  |  |  |  |
| Max. switching voltage | AC/DC 250 V |  |  |  |  |  |
| Min. switching current | AC/DC 5 mA |  |  |  |  |  |
| Max. switching current | AC/DC 6 A |  |  |  |  |  |
| Switching capacity AC 15 | 3 A |  |  |  |  |  |
| Switching capacity DC 13 | at $24 \mathrm{~V}: 1 \mathrm{~A}$; at 115 V : 200 mA ; at $230 \mathrm{~V}: 100 \mathrm{~mA}$ |  |  |  |  |  |
| Max. switching capacity | 1500 VA |  |  |  |  |  |
| Contact material | $\mathrm{AgSnO}_{2}$ |  |  |  |  |  |
| Mechanical service life | $>5 \times 10^{6}$ operations |  |  |  |  |  |
| Switch-on delay | 5 ms |  | 7 ms | 8 ms |  |  |
| Switch-off delay | 4 ms |  | 7 ms | 13 ms |  |  |
| Clearance/creep. dist. (contol/load side) | $>5.5 \mathrm{~mm}$ |  |  |  |  |  |
| Rated insulation voltage (EN 50178) | 300 V |  |  |  |  |  |
| General |  |  |  |  |  |  |
| Housing material | PPE |  |  |  |  |  |
| IP rating | IP 20 |  |  |  |  |  |
| Field installation | rail TS 35 (EN 50022) |  |  |  |  |  |
| Insulation voltage input/output | 4 kVeff |  |  |  |  |  |
| Safe isolation | yes |  |  |  |  |  |
| Operation temperature range | $-25^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$ |  |  |  |  |  |
| Storage temperature range | $-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$ |  |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $6.2 \times 90.0 \times 92.5 \mathrm{~mm}$ |  |  |  |  |  |
| Weight (kg/piece) | 0.035 |  |  |  |  |  |
| Approvals | cULus |  |  |  |  |  |
| Termination | Screw-/spring terminal $0.5-1.5 \mathrm{~mm}^{2}$ |  |  |  |  |  |
| Accesories | Colour $\begin{array}{ccc} & \text { Screw-/spring terminal 0.5 } \\ & \text { 2-pole } & \text { 3-pole }\end{array}$ |  |  | 8-pole | 16-pole | Pkg. units |
| Jumper comb 6A | red | 76280276 | 5762812 | 762822 | 762832 | 10 |
| Jumper comb 6A | white 7 | 76280376 | 762813 | 762823 | 762833 | 10 |
| Jumper comb 6A | blue | 76280476 | 762814 | 762824 | 762834 | 10 |
| Accesories | Colour Article number |  |  | Type |  | Pkg. units |
| Replacement relay for 76X821 | 768002 |  |  | Relais-SNR 24 V 1W |  | 20 |
| Replacement relay for 76X822 | 768001 |  |  | Relais-SNR 12V 1W |  | 20 |
| Replacement relay for 76X826 / 76X827 | 768003 |  |  | Relais-SNR 60V 1W |  | 20 |
| Tag holder $4 \times 11 \mathrm{~mm}$ | white 671313 |  |  | BZT 0411 |  | 100 |
| Isolation plate | 760809 |  |  | TP 7-0809 |  | 5 |
| Labels for laser printer A4 unpunched | 681031 |  |  | LEB-A4 |  | 1 |
| Labels for laser printer $4.23 \times 11 \mathrm{~mm}$ (Sheet with 1056 labels) | 681034 |  |  | LEB 0411 |  | 1 |
| Comments <br> For operation with rated voltage and 1 the neighboring switching components. | 0\% ED over 24 | day, a distance | 10 mm must b | complied with be | en the mod | or to |

## Interface Technology • Microcompact Relay Module

## AC/DC-Relay-Interface, 1, Relay with 1 CO contact, pluggable AC/DC 250 V, 6 A, 1500 VA Screw-/spring terminal, contact material: $\mathrm{AgSnO}_{2}$ + $5 \boldsymbol{\mu m} \mathrm{HV}$



PIN assignment
DC 24 V


AC/DC 24 V


AC/DC 115 V, AC/DC 230 V


Limit curve



## Comments

Hard gold-plated contacts: So that the gold layer is not damaged, the specified values are not permitted to be exceeded. At higher switching capacity, the gold layer vaporizes. The deposition in the housing can lead to sparkovers between the coil and contact.
For operation with rated voltage and $100 \% \mathrm{ED}$ over $24 \mathrm{~h} /$ day, a distance of $=10 \mathrm{~mm}$ must be complied with between the modules or to the neighboring switching components.

## Interface Technology • Microplug Relay Module

DC-Relay-Interface, 2 CO contact, pluggable
AC 400 V / DC 300 V, 8 A, 2000 VA
Screw terminal, Contact material: AgNi, AgNi $5 \mu \mathrm{~m}$ HV





## Interface Technology • Microplug Relay Module

## AC-Relay-Interface, 2 CO contact, pluggable

AC 400 V/DC 300 V, 8 A, 2000 VA
Screw terminal, Contact material: AgNi, AgNi + $5 \boldsymbol{\mu m}$ HV



## Interface Technology • Microplug Relay Module

DC-Relay-Interface, 4 CO contact, pluggable
AC/DC 250 V; 6 A, 1500 VA
Screw terminal, Contact material: AgNi, AgNi + $5 \boldsymbol{\mu m}$ HV


Dimensions


PIN assignment


## Limit curve




| Description |  | Part-No. | Type |  | PU |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Relay Module with AgNi |  |  |  |  |  |
| Rated voltage | DC 12 V | 770440 | REI4-0 | DC 12 V | 5 |
|  | DC 24 V | 770441 | REI4-04 | DC 24 V | 5 |
|  | DC 115 V | 770446 | REI4-0 | DC 115 V | 5 |
| Relay Module with AgNi $+5 \mu \mathrm{~m}$ HV |  |  |  |  |  |
| Rated voltage | DC 12 V | 770460 | REI4H | 4W HTV DC 12 V | 5 |
|  | DC 24 V | 770461 | REI4 | 4W HTV DC 24 V | 5 |
|  | DC 115 V | 770466 | REI4H | 4W HTV DC 115 V | 5 |
|  | DC 12 V |  |  |  |  |
|  |  |  | DC 24 V | DC 115 V |  |
| Input voltage range | 9.6-13.2 V |  | $19.2-26.4 \mathrm{~V}$ | $88.0-121.0 \mathrm{~V}$ |  |
| Rated current | - mA |  |  |  |  |
| Rated voltage | DC 12 V |  | DC 24 V | DC 115 V |  |
| Power comsumption | 0.9 W |  |  |  |  |
| Interrupting voltage | <1.2 V |  | <2.4 V | 11 V11 V |  |
| Protection device | Overload diode |  |  |  |  |
| Max. length of connecting lead | - |  |  |  |  |
| Status indication | LED green |  |  |  |  |
| Output |  |  |  |  |  |
| Contact type | 4 change over contact |  |  |  |  |
| Min. switching voltage | AC/DC 5 V |  |  |  |  |
| Max. switching voltage | AC/DC 250 V |  |  |  |  |
| Min. switching current | AgNi: AC/DC 5 mA ; $\mathrm{AgNi}+5 \mu \mathrm{~m} \mathrm{HV}$ : $\mathrm{AC} / \mathrm{DC} 2 \mathrm{~mA}$ |  |  |  |  |
| Max. switching current | AC/DC 6 A |  |  |  |  |
| Switching capacity AC 15 | bei 24 V : 3.1 A ; bei 230 V : 1.6 A |  |  |  |  |
| Switching capacity DC 13 | at $24 \mathrm{~V}: 2 \mathrm{~A}$; at $115 \mathrm{~V}: 300 \mathrm{~mA}$, at $230 \mathrm{~V}: 150 \mathrm{~mA}$ |  |  |  |  |
| Max. switching capacity | 1500 VA |  |  |  |  |
| Contact material | AgNi bzw. AgNi $+5 \mu \mathrm{~m} \mathrm{HV}$ |  |  |  |  |
| Mechanical service life | $>2 \times 10^{7}$ operations |  |  |  |  |
| Switch-on delay | 13 ms |  |  |  |  |
| Switch-off delay | 3 ms |  |  |  |  |
| Clearance/creep. dist. (contol/load side) | Clearance distance: $>1.6 \mathrm{~mm}$; Creepage distance: $>3.2 \mathrm{~mm}$ |  |  |  |  |
| Rated insulation voltage (EN 50178) | AC 250 V (category B 250) |  |  |  |  |
| General |  |  |  |  |  |
| Housing material | PA 6 |  |  |  |  |
| IP rating | IP 20 |  |  |  |  |
| Field installation | rail TS 35 (EN 50022) |  |  |  |  |
| Insulation voltage input/output | 2,5 kVeff |  |  |  |  |
| Safe isolation | ja |  |  |  |  |
| Operation temperature range | $-40^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ |  |  |  |  |
| Storage temperature range | $-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$ |  |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $27.0 \times 75.0 \times 82.0 \mathrm{~mm}$ |  |  |  |  |
| Weight (kg/piece) | 0.108 |  |  |  |  |
| Approvals | UL, CSA |  |  |  |  |
| Termination | Screw terminal: $0.2-4.0 \mathrm{~mm}^{2}$ |  |  |  |  |
| Accesories | Colour Article number |  |  | Type | Pkg units |
| Relay socket | 770905 |  |  | RES4W-0905 | 10 |
| Retainer / retractor clip | 770906 |  |  | REE4W-0906 | 10 |
| Description plate | 770907 |  |  | REM4W-0907 | 10 |
| Backup relay DC 12 V | 770400 |  |  | RE4W-0400 DC12 | 10 |
| Backup relay DC 12 V HV | 770420 |  |  | RE4WHV-0420 DC12 | 10 |
| Backup relay DC 24 V | 770401 |  |  | RE4W-0401 DC24 | 10 |
| Backup relay DC 24 V HV | 770421 |  |  | RE4WHV-0421 DC24 | 10 |
| Backup relay DC 110 V | 770406 |  |  | RE4W-0406 DC120 | 10 |
| Backup relay DC 110 V HV | 770426 |  |  | RE4WHV-0426 DC120 | 10 |
| Protecting module AC 6-24 V | 770911 |  |  | PM41G-0911 | 10 |
| Protecting module DC 110 V | 770916 PM43G-0916 |  |  |  | 10 |
| Comments <br> Part-No. 770460-770466: <br> Hard gold-plated contacts: So that the gold layer is not damaged, the specified values are not permitted to be exceeded. At higher swit ching capacity, the gold layer vaporizes. The deposition in the housing can lead to sparkovers between the coil and contact. |  |  |  |  |  |

## Interface Technology • Microplug Relay Module

## AC-Relay-Interface, 4 CO contact, pluggable

AC/DC 250 V; 6 A, 1500 VA
Screw terminal, Contact material: AgNi, AgNi + $5 \boldsymbol{\mu m}$ HV



Dimensions


Limit curve


## Interface Technology • Varioprint Relay Module

DC Relay-Module, 1 Relay with positively driven contact, 3 NC and 5 NO contact
AC/DC 250 V, 6 A, 1500 VA
Spring terminal, contact material: $\mathrm{AgSnO}_{2}+0.2 \boldsymbol{\mu m} \mathrm{HV}$

|  | Description Spring terminal |  | Part-No. | Type | PU |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | Rated voltage | DC 24 V |  | 716302 | RPE 6-6302 DC 24 V | 10 |
| 18 |  | DC 110 V | 716303 | RPE 6-6303 DC 110 V | 10 |
| ( | Input |  | DC 24 V | DC 11 |  |
|  | Input voltage range |  | $16.8 \mathrm{~V}-30.0 \mathrm{~V}$ | 77.0 V -1 |  |
|  | Rated current |  | 35.0 mA | 15.0 m |  |
|  | Interrupting voltage |  | <2.4 V | <11 |  |
| [0000060 | Protection device | Overload diode and reverse diode |  |  |  |
|  | Rated insulation voltage (EN 50178) |  | 50 V | 160 |  |
|  | Max. length of connecting lead | - |  |  |  |
|  | Status indication | LED yellow |  |  |  |
|  | Rated frequency | - |  |  |  |
| Dimensions | Output |  |  |  |  |
|  | Contact type | 3 normaly close contact / 5 normaly open contact, positivily driven contact EN 50205 - A |  |  |  |
| O0000000 | Min. switching voltage | AC/DC 5 V |  |  |  |
| 边 | Max. switching voltage | AC/DC 250 V |  |  |  |
| $\square$ - | Min. switching current | AC/DC 5 mA |  |  |  |
|  | Max. switching current | AC/DC 6 A |  |  |  |
| $\bigcirc$ | Switching capacity AC 15 | 3 A |  |  |  |
|  | Switching capacity DC 13 | at $24 \mathrm{~V}: 1 \mathrm{~A}$; at $115 \mathrm{~V}: 200 \mathrm{~mA}$; at $230 \mathrm{~V}: 100 \mathrm{~mA}$ |  |  |  |
| $\xrightarrow[9]{ }$ | Max. switching capacity | 1500 VA |  |  |  |
|  | Contact material | $\mathrm{AgSnO}_{2}+0.2 \mu \mathrm{~m} \mathrm{HV}$ |  |  |  |
|  | Mechanical service life | $1 \times 10^{7}$ operations |  |  |  |
| - । | Switch-on delay | 10 ms |  |  |  |
| -------------------- | Switch-off delay | 10 ms |  |  |  |
| $\begin{array}{lllllllllll}42-A 2 & 11 & 23 & 33 & 43 & 51 & 61 & 73 & 83\end{array}$ | Clearance/creep. dist. (contol/load side) | >10 mm |  |  |  |
| Limit curve $\mathrm{U}_{\mathrm{L}}(\mathrm{N})$ | Rated insulation voltage (EN 50178) | 250 V |  |  |  |
|  | Inrush current | 20 A ( 20 ms ) |  |  |  |
|  | General |  |  |  |  |
|  | Housing material | PPO |  |  |  |
| - | IP rating | IP 20 |  |  |  |
|  | Field installation | rail TS 35 (EN 50022) |  |  |  |
| $\cdots$ | Insulation voltage input/output | 4 kV eff |  |  |  |
|  | Safe isolation | yes |  |  |  |
|  | Operation temperature range | $-25^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ (Class T3 according to EN 30155) |  |  |  |
|  | Storage temperature range | $-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$ |  |  |  |
|  | Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $90.0 \times 77.0 \times 56.0 \mathrm{~mm}$ |  |  |  |
|  | Weight (kg/piece) | 0.120 |  |  |  |
|  | Approvals | cULus in preparation |  |  |  |
|  | Termination | Spring terminal $0.08-2.5 \mathrm{~mm}^{2}$ |  |  |  |

## Interface Technology • Varioprint Relay Module

DC Relay-Module, 1 Relay with positively driven contact, 2 NC and 4 NO contact
AC/DC 250 V, 6 A, 1500 VA
Spring terminal, contact material: $\mathrm{AgSnO}_{2} \mathbf{+ 0 . 2 \mu \mathrm { mV }}$


## Interface technology • 32-way DIN relay module

DC Relay DIN Interface, 32 independent relays, each with 1 CO contact
AC/DC 250 V, 3 A, 750 VA
Screw terminal, Contact material: AgNi


Dimensions


PIN assignment
37-way Sub-D

| 37-way | Function |
| :---: | :---: |
| 1 | Ry1 |
| 2 | Ry2 |
| 3 | Ry3 |
| 4 | Ry4 |
| 5 | Ry5 |
| 6 | Ry6 |
| 7 | Ry7 |
| 8 | Ry8 |
| 9 | Ry9 |
| 10 | Ry10 |
| 11 | Ry11 |
| 12 | Ry12 |
| 13 | Ry13 |
| 14 | Ry14 |
| 15 | Ry15 |
| 16 | Ry16 |
| 17 | 0 V |
| 18 | DC + 24 V |
| 19 | n/c |
| 20 | Ry17 |
| 21 | Ry18 |
| 22 | Ry19 |
| 23 | Ry20 |
| 24 | Ry21 |
| 25 | Ry22 |
| 26 | Ry23 |
| 27 | Ry24 |
| 28 | Ry25 |
| 29 | Ry26 |
| 30 | Ry27 |
| 31 | Ry28 |
| 32 | Ry29 |
| 33 | Ry30 |
| 34 | Ry31 |
| 35 | Ry32 |
| 36 | n/c |
| 37 | n/c |


| Description |  | Part-No. | Type | PU |
| :---: | :---: | :---: | :---: | :---: |
| Rated voltage | DC 24 V | 711756 | UBE-D-1756 | 1 |
| Input |  |  |  |  |
| Input voltage range | 20.4-30.0 V |  |  |  |
| Rated current | per relay 6 mA |  |  |  |
| Rated insulation voltage (EN 50178) | 50 V |  |  |  |
| max. connection cable length | 50 m |  |  |  |
| Status indication | LED red |  |  |  |
| Connection to control device | 37-way Sub-D female connector |  |  |  |
| Connection to supply | $1 \times 2$-way screw terminal: $0,5-2,5 \mathrm{~mm}^{2}$ |  |  |  |
| Output |  |  |  |  |
| Contact type | $32 \times 1$ change over contact |  |  |  |
| Min. switching voltage | AC/DC 12 V |  |  |  |
| Max. switching voltage | AC/DC 250 V |  |  |  |
| Min. switching current | AC/DC 10 mA |  |  |  |
| Max. switching current | AC/DC 3 A |  |  |  |
| Switcing capacity | DC 13 24V: 1A; 115V: 200mA; 230V: 100 mA |  |  |  |
| Max. switching capacity | 750 VA |  |  |  |
| Contact material | AgNi |  |  |  |
| Mechanical service life | $>5 \times 10^{6}$ operations |  |  |  |
| Switch-on delay | 5 ms |  |  |  |
| Switch-off delay | 4 ms |  |  |  |
| Clearance/creep. dist. (contol/load side) | > 5,5 mm |  |  |  |
| Rated insulation voltage (EN 50178) | 300 V |  |  |  |
| Termination | $32 \times 3$-way screw terminal: $0,5-2,5 \mathrm{~mm}^{2}$ |  |  |  |
| General |  |  |  |  |
| Housing material | PPE |  |  |  |
| IP rating | IP 20 |  |  |  |
| Field installation | rail TS 35 (EN50022) |  |  |  |
| Insulation voltage input/output | 1.2 kVeff |  |  |  |
| Operation temperature range | $0-70{ }^{\circ} \mathrm{C}$ |  |  |  |
| Storage temperature range | $-20-80^{\circ} \mathrm{C}$ |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $248.0 \times 78.0 \times 62.0 \mathrm{~mm}$ |  |  |  |
| Weight (kg/piece) | 1.1 |  |  |  |
| Comments <br> Accessories <br> Cable assemblies suitable for direct connection to most standard PLC systems (e.g. Allen Bradley, Siemens, Mitsubishi) are available in any cable length. Please contact the Lutze Sales Office to discuss your requirements. |  |  |  |  |
| Dimensions |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Notice

## Interface Technology • Minicompact Solid State Relay

DC Solid State Relay, 2 wire
Switching element DC 60 V; 1.5 A
Screw terminal



## Interface Technology • Microcompact Solid State Relay

DC Solid State Relay, 2 wire
Switching element DC 48 V; 0.5 A; 20 kHz Screw terminal


| Description |  | Part-No. | Type | PU |
| :---: | :---: | :---: | :---: | :---: |
| Screw terminal |  |  |  |  |
| Rated voltage | DC 24 V | 762082 | OT 6-2082 DC 24 V | 4 |
| Input |  | DC 24 V |  |  |
| Input voltage range |  | $4.2-30.0 \mathrm{~V}$ |  |  |
| Rated current |  | 0.1 mA |  |  |
| Interrupting voltage |  | <2.7 V |  |  |
| Protection device |  | Suppressor diode |  |  |
| Status indication |  | LED yellow |  |  |
| Rated frequency |  | - |  |  |
| Output |  |  |  |  |
| Switching element |  | Transistor, N/O contact |  |  |
| Min. switching voltage |  | DC 5 V |  |  |
| Max. switching voltage |  | DC 48 V |  |  |
| Min. switching current |  | DC 10 mA |  |  |
| Max. switching current |  | DC 500 mA (Derating) |  |  |
| Inrush current |  | - |  |  |
| Leakage current |  | - |  |  |
| Switch-on delay |  | $12 \mu \mathrm{~s}$ |  |  |
| Switch-off delay |  | $12 \mu \mathrm{~s}$ |  |  |
| Switching frequency |  | $<20 \mathrm{kHz}$ |  |  |
| Clearance/creep. dist. (contol/load side) |  | $>4.5$ mm |  |  |
| Protection device output |  | Suppressor diode |  |  |
| General |  |  |  |  |
| Housing material |  | PPE |  |  |
| IP rating |  | IP 20 |  |  |
| Field installation |  | rail TS 35 (EN 50022) |  |  |
| Insulation voltage input/output |  | 3,75 kVeff |  |  |
| Safe isolation |  | yes |  |  |
| Operation temperature range |  | $-25^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$ |  |  |
| Storage temperature range |  | $-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$ |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) |  | $6.2 \times 84.0 \times 80.0 \mathrm{~mm}$ |  |  |
| Weight (kg/piece) |  | 0.029 |  |  |
| Approvals |  | - |  |  |
| Termination |  | Screw terminal: $0.25-2.5 \mathrm{~mm}^{2}$ |  |  |
| Accesories | Colour | Article number | Type | Pkg. units |
| Jumper comb 24pole, 26A | blue | 760801 | BK 6-0801 | 5 |
| Tag holder $4 \times 11 \mathrm{~mm}$ | white | 681313 | BZT 0411 | 100 |
| Labels for laser printer A4 unpunched |  | 681031 | LEB-A4 | 1 |
| Labels for laser printer $4.23 \times 11 \mathrm{~mm}$ |  | 681034 | LEB-0411 | 1 |

## Interface Technology • Microcompact Solid State Relay

DC Solid State Relay, 2 wire
Switching element DC 48 V ; 0.5 A
Screw-/ Spring terminal


| Description |  | Part-No. | Type |  | PU |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Screw terminal |  |  |  |  |  |
| Rated voltage | DC 24 V | 760101 |  | 24 V | 10 |
| Spring terminal |  |  |  |  |  |
| Rated voltage | DC 24 V | 761101 |  | 24 V | 10 |
| Input |  |  | 24 V |  |  |
| Input voltage range |  |  | 30. |  |  |
| Rated current |  |  | mA |  |  |
| Interrupting voltage |  |  | V |  |  |
| Protection device |  |  | ge |  |  |
| Status indication |  |  | yellow |  |  |
| Rated frequency |  |  | - |  |  |
| Output |  |  |  |  |  |
| Switching element |  |  | N/O |  |  |
| Min. switching voltage |  |  | 6 V |  |  |
| Max. switching voltage |  |  | 48 V |  |  |
| Min. switching current |  |  | 0 m |  |  |
| Max. switching current |  |  | (De |  |  |
| Inrush current |  |  | - |  |  |
| Leakage current |  |  | - |  |  |
| Switch-on delay |  |  | ms |  |  |
| Switch-off delay |  |  | ms |  |  |
| Switching frequency |  |  | 50 |  |  |
| Clearance/creep. dist. (contol/load side) |  |  | mm |  |  |
| Protection device output |  |  | sor |  |  |
| General |  |  |  |  |  |
| Housing material |  |  | E |  |  |
| IP rating |  |  | 20 |  |  |
| Field installation |  |  | EN |  |  |
| Insulation voltage input/output |  |  | Veff |  |  |
| Safe isolation |  |  | S |  |  |
| Operation temperature range |  |  | -60 |  |  |
| Storage temperature range |  |  | -80 |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) |  |  | $\times 75$ |  |  |
| Weight (kg/piece) |  |  | 029 |  |  |
| Approvals |  |  | us |  |  |
| Termination |  | Screw- | inal | mm |  |
| Accesories | Colour |  |  | Type | Pkg. units |
| Jumper comb 24pole, 26A | blue |  |  | BK 6-0801 | 5 |
| Tag holder $4 \times 11 \mathrm{~mm}$ | white |  |  | BZT 0411 | 100 |
| Labels for laser printer A4 unpunched |  |  |  | LEB-A4 | 1 |
| Labels for laser printer $4.23 \times 11 \mathrm{~mm}$ (Sheet with 1056 labels) |  |  |  | LEB-0411 | 1 |

## Interface Technology • Microcompact Solid State Relay

DC Solid State Relay, 3 wire, plus switching

## Switching element DC 30 V; 1.7 A; short circuit protection Screw-/ Spring terminal




## Interface Technology • Microcompact Solid State Relay

DC Solid State Relay, 3 wire, plus switching
Switching element DC 30 V; 5 A; 10 A Screw-/Spring terminal


| Description |  | Part-No. | Type | PU |
| :---: | :---: | :---: | :---: | :---: |
| Screw terminal |  |  |  |  |
| Rated voltage | DC $24 \mathrm{~V} / 5 \mathrm{~A}$ | 760105 | OT 6-0105 DC 24 V | 2 |
|  | DC $24 \mathrm{~V} / 10 \mathrm{~A}$ | 760708 | OT 6-0708 DC 24 V | 1 |
| Spring terminal |  |  |  |  |
| Rated voltage | DC $24 \mathrm{~V} / 5 \mathrm{~A}$ | 761105 | OT 6-1105 DC 24 V | 2 |
|  | DC $24 \mathrm{~V} / 10 \mathrm{~A}$ | 761708 | OT 6-1708 DC 24 V | 1 |
| Input |  | V/5 A | DC 24 |  |
| Input voltage range |  | 30.0 V | 16.0 - |  |
| Rated current |  | mA | 22.0 |  |
| Interrupting voltage | $<5 \mathrm{~V}$ |  |  |  |
| Protection device | Bridge rectifier |  | Reverse diode, Suppressor diode |  |
| Status indication | LED yellow |  | LED yellow, Switching current > 3 A: LED green |  |
| Rated frequency |  |  |  |  |
| Output |  |  |  |  |
| Switching element | Transistor, N/O contact |  |  |  |
| Min. switching voltage | DC 10 V |  |  |  |
| Max. switching voltage | DC 30 V |  |  |  |
| Min. switching current | DC 500 mA |  |  |  |
| Max. switching current | DC 5 A (Derating) |  | DC 10 A (Derating) |  |
| Inrush current |  |  | - |  |
| Leakage current | $<20 \mu \mathrm{~A}$ |  |  |  |
| Switch-on delay | $260 \mu \mathrm{~s}$ |  | 0.1 ms |  |
| Switch-off delay | $4 \mu \mathrm{~s}$ |  | 7 ms |  |
| Switching frequency | $<500 \mathrm{~Hz}$ |  | $<50 \mathrm{~Hz}$ |  |
| Clearance/creep. dist. (contol/load side) | $>5.5 \mathrm{~mm}$ |  |  |  |
| Protection device output | Supressor diode |  |  |  |
| General |  |  |  |  |
| Housing material | PPE |  |  |  |
| IP rating | IP 20 |  |  |  |
| Field installation | rail TS 35 (EN 50022) |  |  |  |
| Insulation voltage input/output | 4 kVeff |  |  |  |
| Safe isolation | yes |  |  |  |
| Operation temperature range | $-25^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$ |  |  |  |
| Storage temperature range | $-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$ |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) | $12.5 \times 79.0 \times 84.0 \mathrm{~mm}$ |  |  |  |
| Weight (kg/piece) | 0.049 |  |  |  |
| Approvals | DC $24 \mathrm{~V} / 5 \mathrm{~A}$ : cULus |  |  |  |
| Termination | Screw-/spring terminal $0.25-2.5 \mathrm{~mm}^{2}$ |  |  |  |

gnment
DC $24 \mathrm{~V} / 5 \mathrm{~A}$


DC $24 \mathrm{~V} / 10 \mathrm{~A}$


Derating
DC 24 V / 5 A


DC $24 \mathrm{~V} / 10 \mathrm{~A}$


## Interface Technology • Microcompact Solid State Relay

## AC/DC Solid State Relay, 3 wire, plus switching

Switching element DC 30 V; 3 A; short circuit protection, wide range input Screw-/ Spring terminal



## Interface Technology • Microcompact Solid State Relay

DC Solid State Relay, 3 wire, plus switching
Switching element DC 30 V; 5 A; short circuit protection Screw-/ Spring terminal



## Interface Technology • Microcompact Solid State Relay

DC Solid State Relay, 3 wire, plus switching

## Switching element DC 30 V; 0.5 A; change over contact

 Screw terminal

| Description |  | Part-No. | Type | PU |
| :---: | :---: | :---: | :---: | :---: |
| Screw terminal |  |  |  |  |
| Rated voltage | DC 24 V | 762083 | OT 6-2083 DC 24 V | 4 |
| Input |  | DC 24 V |  |  |
| Input voltage range |  | $10.0-40.0 \mathrm{~V}$ |  |  |
| Rated current |  | 6.0 mA |  |  |
| Interrupting voltage |  | $<5 \mathrm{~V}$ |  |  |
| Protection device |  | Suppressor diode |  |  |
| Status indication |  | LED yellow |  |  |
| Rated frequency |  | - |  |  |
| Output |  |  |  |  |
| Switching element |  | Transistor NPN / PNP, change over contact |  |  |
| Min. switching voltage |  | DC 5 V |  |  |
| Max. switching voltage |  | DC 48 V |  |  |
| Min. switching current |  | DC 10 mA |  |  |
| Max. switching current |  | DC 500 mA |  |  |
| Inrush current |  | - |  |  |
| Leakage current |  | - |  |  |
| Switch-on delay |  | $20 \mu \mathrm{~s}$ |  |  |
| Switch-off delay |  | $100 \mu \mathrm{~s}$ |  |  |
| Switching frequency |  | $<1 \mathrm{kHZ}$ |  |  |
| Clearance/creep. dist. (contol/load side) |  | $>4.5 \mathrm{~mm}$ |  |  |
| Protection device output |  | Suppressor diode |  |  |
| General |  |  |  |  |
| Housing material |  | PPE |  |  |
| IP rating |  | IP 20 |  |  |
| Field installation |  | rail TS 35 (EN 50022) |  |  |
| Insulation voltage input/output |  | 3,75 kVeff |  |  |
| Safe isolation |  | yes |  |  |
| Operation temperature range |  | $-25^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$ |  |  |
| Storage temperature range |  | $-40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$ |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) |  | $6.2 \times 84.0 \times 80.0 \mathrm{~mm}$ |  |  |
| Weight (kg/piece) |  | 0.029 |  |  |
| Approvals |  | - |  |  |
| Termination |  | Screw terminal: $0.25-2.5 \mathrm{~mm}^{2}$ |  |  |
| Accesories | Colour | Article number | Type | Pkg. units |
| Jumper comb 24pole, 26A | blue | 760801 | BK 6-0801 | 5 |
| Tag holder $4 \times 11 \mathrm{~mm}$ | white | 681313 | BZT 0411 | 100 |
| Labels for laser printer A4 unpunchedLabels for laser printer $4.23 \times 11 \mathrm{~mm}$ |  | 681031 | LEB-A4 | 1 |
|  |  | 681034 | LEB-0411 | 1 |

Labels for laser printer $4.23 \times 11 \mathrm{~mm}$
(Sheet with 1056 labels)
Action chart


## Interface Technology • Microcompact Solid State Relay

DC Solid State Relay, 2 wire, pluggable
Switching element DC 48 V; 100 mA Screw-/Spring terminal



## Interface Technology • Microcompact Solid State Relay

AC/DC Solid State Relay, 2 wire, pluggable Switching element DC 30 V; 3 A Screw-/Spring terminal


| Description | Part-No. |  |  |  | Type |  |  | PU |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Screw terminal |  |  |  |  |  |  |  |  |
| Rated voltage | AC/DC 24 V |  | 760311 |  | OT 7-03 | /DC 24 V |  | 5 |
| Spring terminal |  |  |  |  |  |  |  |  |
| Rated voltage | AC/DC 24 V |  | 761311 |  | OT 7-13 | /DC 24 V |  | 5 |
| Input |  |  |  |  | 24 V |  |  |  |
| Input voltage range |  |  |  |  | 30.0 V |  |  |  |
| Rated current |  |  |  |  | mA |  |  |  |
| Interrupting voltage |  |  |  |  | 4 V |  |  |  |
| Protection device |  |  |  |  | rectifier |  |  |  |
| Status indication |  |  |  |  | yellow |  |  |  |
| Rated frequency |  |  |  |  | 0 Hz |  |  |  |
| Output |  |  |  |  |  |  |  |  |
| Switching element |  |  |  | Trans | N/O conta |  |  |  |
| Min. switching voltage |  |  |  |  | 0.5V |  |  |  |
| Max. switching voltage |  |  |  |  | 30 V |  |  |  |
| Min. switching current |  |  |  |  | 0 mA |  |  |  |
| Max. switching current |  |  |  |  | Derating) |  |  |  |
| Inrush current |  |  |  |  |  |  |  |  |
| Leakage current |  |  |  |  | - |  |  |  |
| Switch-on delay |  |  |  |  | ms |  |  |  |
| Switch-off delay |  |  |  |  | ms |  |  |  |
| Switching frequency |  |  |  |  | Hz |  |  |  |
| Clearance/creep. dist. (contol/load side) |  |  |  |  |  |  |  |  |
| Protection device output |  |  |  |  |  |  |  |  |
| General |  |  |  |  |  |  |  |  |
| Housing material |  |  |  |  | E |  |  |  |
| IP rating |  |  |  |  | 20 |  |  |  |
| Field installation |  |  |  | rail | EN 5002 |  |  |  |
| Insulation voltage input/output |  |  |  |  | Veff |  |  |  |
| Safe isolation |  |  |  |  | S |  |  |  |
| Operation temperature range |  |  |  |  | $-60^{\circ} \mathrm{C}$ |  |  |  |
| Storage temperature range |  |  |  |  | $-80^{\circ} \mathrm{C}$ |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) |  |  |  | $6.2 \times$ | $\times 92.5 \mathrm{~m}$ |  |  |  |
| Weight (kg/piece) |  |  |  |  | . 35 |  |  |  |
| Approvals |  |  |  | cULu | preparatio |  |  |  |
| Termination |  |  | Scre | w-/sprin | minal 0.5-1 |  |  |  |
| Accesories | Colour | 2-pole |  | 3-pole | 4-pole | 8-pole | 16-pole | Pkg. units |
| Jumper comb 6A | red | 762802 |  | 762805 | 762812 | 762822 | 762832 | 5 |
| Jumper comb 6A | white | 762803 |  | 762806 | 762813 | 762823 | 762833 | 5 |
| Jumper comb 6A | blue | 762804 |  | 762807 | 762814 | 762824 | 762834 | 5 |
| Accesories | Colour |  |  | Article n |  | Type |  | Pkg. units |
| SSR-module |  |  |  | 768009 |  | SSR-DC | DC $30 \mathrm{~V} ; 3 \mathrm{~A}$ | 20 |
| Tag holder $4 \times 11 \mathrm{~mm}$ | white |  |  | 681313 |  | BZT -0411 |  | 100 |
| Isolation plate |  |  |  | 760809 |  | TP 7-080 |  | 5 |
| Labels for laser printer A4 unpunched |  |  |  | 681031 |  | LEB-A4 |  | 1 |
| Labels for laser printer $4.23 \times 11 \mathrm{~mm}$ (Sheet with 1056 labels) |  |  |  | 681034 |  | LEB-041 |  | 1 |

## Interface Technology • Microcompact Solid State Relay

DC Solid State Relay, 2 wire
Switching element AC/DC 250 V; 2 A
Screw-/ Spring terminal


| Description | Part-No. |  |  |  | Type |  |  | PU |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Screw terminal |  |  |  |  |  |  |  |  |
| Rated voltage | DC 24 V |  | 760107 |  | OT 7-01 | C 24 V |  | 5 |
| Spring terminal |  |  |  |  |  |  |  |  |
| Rated voltage | DC 24 V |  | 761107 |  | OT 7-11 | C 24 V |  | 5 |
| Input |  |  |  |  | 24 V |  |  |  |
| Input voltage range |  |  |  |  | 32.0 V |  |  |  |
| Rated current |  |  |  |  | mA |  |  |  |
| Interrupting voltage |  |  |  |  | - |  |  |  |
| Protection device |  |  |  |  | or diode |  |  |  |
| Status indication |  |  |  |  | green |  |  |  |
| Rated frequency |  |  |  |  |  |  |  |  |
| Output |  |  |  |  |  |  |  |  |
| Switching element |  |  |  | Mos | /O conta |  |  |  |
| Min. switching voltage |  |  |  |  | C 2 V |  |  |  |
| Max. switching voltage |  |  |  |  | 253 V |  |  |  |
| Min. switching current |  |  |  |  | 1 mA |  |  |  |
| Max. switching current |  |  |  | AC/D | (Deratin |  |  |  |
| Inrush current |  |  |  | AC | A; 10 ms |  |  |  |
| Leakage current |  |  |  |  | - |  |  |  |
| Switch-on delay |  |  |  |  | ms |  |  |  |
| Switch-off delay |  |  |  |  | ms |  |  |  |
| Switching frequency |  |  |  |  | - |  |  |  |
| Clearance/creep. dist. (contol/load side) |  |  |  |  | mm |  |  |  |
| Protection device output |  |  |  |  | istor |  |  |  |
| General |  |  |  |  |  |  |  |  |
| Housing material |  |  |  |  | E |  |  |  |
| IP rating |  |  |  |  | 20 |  |  |  |
| Field installation |  |  |  | rail T | (EN 5002 |  |  |  |
| Insulation voltage input/output |  |  |  |  | Veff |  |  |  |
| Safe isolation |  |  |  |  | - |  |  |  |
| Operation temperature range |  |  |  |  | $-60^{\circ} \mathrm{C}$ |  |  |  |
| Storage temperature range |  |  |  |  | $-80^{\circ} \mathrm{C}$ |  |  |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) |  |  |  | $6.2 \times$ | $\times 92.5 \mathrm{~mm}$ |  |  |  |
| Weight (kg/piece) |  |  |  |  | . 30 |  |  |  |
| Approvals |  |  |  | cUL | preparatio |  |  |  |
| Termination |  |  | Screw | w-/sprin | minal 0.5 | $\mathrm{m}^{2}$ |  |  |
| Accesories | Colour |  |  | Article |  | Type |  | Pkg. units |
| Tag holder $4 \times 11 \mathrm{~mm}$ | white |  |  | 681313 |  | BZT -04 |  | 100 |
| Isolation plate |  |  |  | 760809 |  | TP 7-08 |  | 5 |
| Labels for laser printer A4 unpunched |  |  |  | 681031 |  | LEB-A4 |  | 1 |
| Labels for laser printer $4.23 \times 11 \mathrm{~mm}$ (Sheet with 1056 labels) |  |  |  | 681034 |  | LEB-04 |  | 1 |
| Accesories | Colour | 2-pole |  | 3-pole | 4-pole | 8-pole | 16-pole | Pkg. units |
| Jumper comb 6A | red | 762802 |  | 762805 | 762812 | 762822 | 762832 | 5 |
| Jumper comb 6A | white | 762803 |  | 762806 | 762813 | 762823 | 762833 | 5 |
| Jumper comb 6A | blue | 762804 |  | 762807 | 762814 | 762824 | 762834 | 5 |

## Interface Technology • Minicompact Solid State Relay

DC Solid State Relay, 2 wire

## Switching element AC 250 V; 1.5 A; Zero crossing switch Screw terminal





## Interface Technology • Microcompact Solid State Relay

DC Solid State Relay, 2 wire
Switching element AC 250 V; 1A
Screw terminal


(Sheet with 1056 labels)

## Interface Technology • Microcompact Solid State Relay

AC/DC Solid State Relay, 2 wire, pluggable Switching element AC 275 V; 750 mA Screw-/Spring terminal



## Interface Technology • Solid State Relay

DC Solid State Relay, 2 wire
Switching element AC 6600 V; 25 A; Zero crossing switch Screw terminal


| Description |  | Part-No. | Type | PU |
| :---: | :---: | :---: | :---: | :---: |
| Screw terminal |  |  |  |  |
| Rated voltage | DC $24 \mathrm{~V} / 25 \mathrm{~A}$ | 716080 | OT-6080 DC 24 V | 1 |
| Input |  |  | V / 25 A |  |
| Input voltage range |  |  | 32.0 V |  |
| Rated current |  |  | mA |  |
| Interrupting voltage |  |  | V |  |
| Protection device |  |  | - |  |
| Status indication |  |  | green |  |
| Rated frequency |  |  | - |  |
| Output |  |  |  |  |
| Switching element |  |  | N/O contact |  |
| Min. switching voltage |  |  | 48 V |  |
| Max. switching voltage |  |  | 660 V |  |
| Min. switching current |  |  | 00 mA |  |
| Max. switching current |  |  | (Derating) |  |
| Inrush current |  |  | ( 10 ms ) |  |
| Leakage current |  |  | mA |  |
| Switch-on delay |  |  | ms |  |
| Switch-off delay |  |  | ms |  |
| Switching frequency |  |  | Hz |  |
| Clearance/creep. dist. (contol/load side) |  |  |  |  |
| Protection device output |  |  | istor |  |
| General |  |  |  |  |
| Housing material |  | Plastic, flam | according to UL-94 |  |
| IP rating |  |  | 20 |  |
| Field installation |  |  | (EN 50022) |  |
| Insulation voltage input/output |  |  | Veff |  |
| Safe isolation |  |  | es |  |
| Operation temperature range |  |  | $-70^{\circ} \mathrm{C}$ |  |
| Storage temperature range |  |  | $-80^{\circ} \mathrm{C}$ |  |
| Dimensions ( $\mathrm{w} \times \mathrm{h} \times \mathrm{d}$ ) |  |  | . $\times 80.0 \mathrm{~mm}$ |  |
| Weight (kg/piece) |  |  | 260 |  |
| Approvals |  |  | $-$ |  |
| Termination |  |  | : $0.25-4.0 \mathrm{~mm}^{2}$ |  |

[^0]
## Interface Technology • Solid State Relay

DC Solid State Relay, 3phasig
Switching element AC 400 V; 3.4 A / 3.8 A, Zero crossing switch Screw terminal



## Action chart



## Lutze Interface technology



Supression Technology, Module and Interface Technology, Power Supplies
Please see our catalogue No. 3 for our full interface range

## Basic principles - Microcompact coupling modules

The Lutze switching module product family has been developed with the goal of offering the user a maximum of functionality in a minimum of space. For example the $6.2-\mathrm{mm}$ wide relay coupling modules can handle switching currents of up to 6 A without problems. The products offer a wide range of possibilities ranging from relay interfaces to electronic semiconductor coupling elements.
The application emphasis of the Microcompact family is the interface between the automation device (the PLC or the PC ) and the machine peripherals. Since a standard PLC output is often not powerful enough to activate a hydraulic valve, Microcompact modules can be used to perform this task. A wide range of input voltages are available for both electromechanical or semiconductor relays (optocouplers) depending on the application.

Ultra-slim Microcompact modules are available with either standard wiring configuration, or 'TOP' connection technology allowing the wiring to be easily introduced from the front of the module promoting error free wiring. Minicompact products offer switching devices in the lowest profile housings. Starting at just 12.5 mm width, this product range offers a choice of output types in case sizes just 60 mm high by 67 mm deep.
The Lutze Microplug product range provides multi-pole switching in a conventional 'plug-in' relay and base combination, complete with indication and suppression module. All products are easily mounted by simply snapping on to standard DIN rail.

## Easy wiring

Connections with the same potential, such as ground or power cables (PLC ground, load return cable, sensor supply, etc.) can be looped through, using wiring comb profiles or pre-customised daisy chains. Microcompact and Minicompact modules are available with either screw-type or spring-loaded terminal technology. If spring-loaded terminals are used, crimp-on ferrules and awkward screwconnecting can be eliminated.

## Models

All relay modules are designed to comply with applicable regulations and standards. This includes adherence to spacing for safe isolation (creepage and clearance distances are $>5.5 \mathrm{~mm}$ ), the rated isolation voltage (see product specifications), overvoltage category III, and a withstand surge voltage of 6 kV . In addition, the housings are designed so that mechanical and climate factors in an industrial environment do not destroy the plastics used. LUTZE uses mainly Luranyl (PPE).

Depending on the application, modules with different contact materials are available. Input module have mostly hard gold-plated contacts with $6 \mu$ hard gold plate for switching even the smallest currents and voltage; some are suitable for dry circuits. Output modules feature normal contact
material, e.g. AgSnO2, suitable for switching medium to large currents (typically 0.5 A and above).

## Microcompact plug-in relays

In the installation width 6.2 mm , the relay module is plug-in, which means that during preventive maintenance or in the event of faults the relay can be replaced without having to disconnect the wiring.
The TOP wiring for screw terminals used in this housing model makes wiring considerably easier, reduces the space requirement for the cable feed and enables error-free wiring.

## Basic principles - Relay modules

## General

Electromechanical relays are often used as interface modules between peripherals and control units. For these applications you will find modules for the different voltage and power levels in the LUTZE range of products. As a general principle, electromechanical relays are divided into two main groups: monostable and bistable relays. In a monostable relay, the contacts return to the stable condition after the excitation stops. Bistable relays remain in their momentary state after shutdown. The relay modules featured in this catalogue are all equipped with monostable relays.

## Excitation side

Depending on the relay used and the activation type, there are different input circuits. For pure alternating current (AC), only a visual switching status indication is used. This switching status indication is achieved typically with a diode circuit.


For a pure DC input, a recovery diode parallel to the coil is the most important element. This diode limits the inductive switchoff voltage to about 0.7 V in order to protect the connected control electronics. To increase the connection safety with regard to the recovery diode, a polarity reversal protection diode is added to the input of the module.


If a bridge rectifier is added to the input circuit, either AC or DC voltage can be applied for activation. Two diodes of the bridge circuit are used as recovery diodes and limit the inductive voltage to 1.4 V . Moreover, polarity reversal of the activation is no longer a problem.


## Operating voltage range

The ambient temperature of the application site has a major influence on some of the operating parameters. Among other things, it affects the values for pick-up and release voltages. The following diagram shows the behaviour of the operating voltage as a function of ambient temperature. The operating range of the relay compliant with IEC 255 / DIN VDE 0435 is crosshatched.


Principle of the flow of operating voltage in a relay
I. Maximum permissible voltage at $100 \%$ duty cycle
(sustaining the coil limit temperature)
II. Minimum response voltage

## Contact side, output level

The large number of applications in a wide range of industrial fields makes it necessary to customise the relay to the application by choosing the right contact material. You will find details of the contact materials with their current carrying capabilities in the technical details for each product.

## Basic principles - Optocouplers

## Activation

LUTZE offers optocoupler modules as interface modules in different voltage and power classes. This makes it possible to use the most suitable module to customise the control system and the process peripherals in different industrial applications. Since the actual optocoupler component, due to its design, is limited to a specific operating range, the customizing must be achieved via suitable input circuits. Depending on the circuit layout, current consumption can range from 1 to 12 mA and the voltage range from 5 V to 230 V . In doing so, a distinction must be made between inputs for DC and AC.

## DC input (DC-In)

Customizing is achieved through electronics that are matched to the desired input voltage range. At the same time, a polarity reversal protection diode offers protection in the event of accidental incorrect power supply connection. Specially matched filters effectively suppress high-frequency interference


## AC input (AC-In)

The optocoupler element needs stable DC voltage for effective activation. A rectifier with a downstream equalising capacitor is connected to the AC input. The generated control voltage then switches the optocoupler, similar to the DC version. With the AC version, it should be taken into account that, as a rule, the switching frequency of the coupler is generally less than half of the input/ power cable frequency of the AC input. A higher switching frequency causes continuous connection due to the equalising capacitor.


Load output
Each application case and each load type make different demands on the optocoupler output. The main criteria here are:

- Power amplification
- Adaptation to the switching voltage and current (AC/DC)
- Short-circuit protection
- Polarity reversal protection


## DC output (DC-Out)

One or more semiconductor stages complement the optocoupler element in order to achieve the necessary output power. This is achieved internally; on the outside, the connection terminals are designed to be the same as in conventional connections. For flawless function, attention must be paid to ensuring the correct polarity
of the connections. To select the right optocoupler module, the following sequence is recommended: operating voltage range, maximum continuous current, and type of output circuit.

## 1. Operating voltage range

Determine the minimum and/or maximum voltages to be switched. The lower voltage must be maintained for reliable function; the upper limit must not be exceeded in order to protect the output transistor. 2. Maximum continuous current

The maximum continuous current depends on the power semiconductor used and the environment conditions. Continuously exceeding the value causes the output semiconductor to fail due to overheating. A temporary significant overload has the same effect. Since the output current depends on the temperature, it may be necessary to derate the output, depending on the ambient temperature of the optocoupler. For details contact the Lutze technical team.

3. Type of output circuit

The 2-wire output is comparable to a mechanical contact. However, the polarity of the connections is firmly assigned and must be adhered to for safe function. A 3 -wire output, on the other hand, is potential-specific. For safe operation, both potentials must be connected to the voltage source on the output side. In the switched-off state, a permanent connection to the -ve potential (ground) is established. The advantage is an almost constant internal resistance.


3-wire output

## Basic principles - Optocouplers

## AC output (AC-Out)

In order to switch AC voltages, a semiconductor element for AC voltage applications (triac) is connected to the load side of the optocoupler element. Here, as with the DC output, the same restrictions apply regarding maximum operating voltage and continuous current range as a function of the ambient temperature. In addition, for the AC voltage versions, the peak turn-off voltage of the triac (e.g., 800 V ) must be adhered to. In order not to destroy the triac, it must not be exceeded during voltage fluctuations or peaks. This means that all switching inductive elements must have the appropriate suppression/protection devices.


Principle wiring diagram, AC output

## Protection circuits

Switching inductive devices, such as contactors, valves, motors, etc., always causes high induction voltages with a sharp rise or pulse at the moment they are shut off. The voltage, which can reach very high amplitudes, is also superimposed on to a more or less wide high-frequency spectrum. Electronic components are especially sensitive to this. This means that general protection against these interruptions is necessary. Protection circuits are wired parallel to the load in order to attenuate damaging inductive voltages to a harmless level. Depending on the optocoupler design and application (load), different methods can be used.

- RC modules for AC applications
- Varistors for AC and DC operation
- Recovery/suppressor diodes for DC applications

With the right protection circuit for each application, LUTZE guarantees problem-free and safe function of all optocoupler modules used.

Protection circuit for AC output


Notes on application


## Terminology

Rated (maximum switching) current: This is the highest current that a device can continuously carry within the prescribed temperature limits. In virtually all cases the Rated current is also the current that, when associated with the Rated switching voltage, gives rise to the Rated load (AC1).

Rated (maximum switching) voltage: This is the switching voltage that when associated with the Rated current gives rise to the Rated load (AC1). The Rated load is used as the reference load for electrical life tests.

## Rated isolation voltage

The RMS or direct voltage value of the highest constant voltage occurring between any two active parts of a current circuit if the device is used for its intended purpose. This value must be specified for each circuit of a device, such as control side, load side, and for all circuits in relation to each other, e.g. control side versus load side.

## Cage clamp

Screwless connection technology for solid, multi-strand, and fine-strand copper wires with nominal cross sections of 0.08 $\mathrm{mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$. The cage clamp spring provides sufficient contact pressure to create an airtight contact surface between wire and bus bar. This protects the transition point from corrosive elements. Cage clamp connections are suited for high voltage applications as well as for the transmission of voltages and currents in the mV and mA ranges. The advantages of this connection technology are a notably shorter wiring time, ease of maintenance, and better availability and reliability of the devices.

## CE labelling

CE labelling (CE stands for "Conformité Européenne") is a prerequisite for the sale of many electrical products within the European Union. It is an indicator for government supervisory agencies that the product meets the basic requirements of the relevant EU Directives (laws). Based on existing directives, the Low Voltage Directive 73/23/EEC applies to the LUTZE interface modules. Devices compliant with this directive must be identified.

## Duty cycle

Ratio of on-state time (under load) to operating time, given as a percentage. The duty cycle has an impact on the thermal behaviour of the interface modules. A relay coil, for example, reaches its final temperature after 30 minutes of excitation.

## Inrush peak current

The highest current at the moment of switching on. In particular, this should be taken into account if capacitors, heater windings or lights are switched. Since the inrush peak current can be a multiple of the constant current (switching current), it is indicated with a time limit.

## Switch-on time (rise time)

a) For make contacts: the time between control voltage turn-on and closing of the contact.
b) For break contacts: the time between control voltage turn-on and opening of the contact.
c) For SPDT contacts: the time between control voltage turn-
on and contacting the opposite contact.
d) For semiconductors: the time between control voltage turn-on and switching through the semiconductor

## Switch-off time (fall time)

a) For make contacts: the time between control voltage turn-off and opening of the contact.
b) For break contacts: the time between control voltage turn-off and closing the contact (not including bouncing time).
c) For SPDT contacts: the time between control voltage turn-off and contacting the opposite contact.
d) For semiconductors: the time between control voltage turn-off and complete off-state of the semiconductor.

## DC load limit curve

Relation of DC current and DC voltage during contact switching of ohmic loads and a 10 ms light arc at the contact. The load limit curve is a DC limit cut-off capacity which does not make any claims regarding the life of the contact.

Relay with positively driven contacts, or safety relay A relay with positively driven contacts must satisfy the requirements of a very specific safety EN standard. Such relays are used within safety systems to guarantee their operational safety and reliability, contributing to a safe working environment. A Safety Relay must have at least one NO and one NC forcibly guided contact. These contacts must be mechanically linked, such that if one of the contacts fails to open, the other is prevented from closing (and vice versa). This requirement is fundamental in identifying the non-correct operation of a circuit. For example, a failure of a NO contact to open (for example, by welding closed) is identified by the failure of the NC from closing, therefore signalling an operational anomaly. EN 50205 is the standard that establishes the requirements for relays with forcibly guided contacts, and it describes two types:

- Type A: where all the contacts are forcibly guided
- Type B: where only some contacts are forcibly guided


## SSR - Solid State Relay

A relay utilising semiconductor technology for load switching. These relays are not subject to burning of contacts and there is no migration of contact material. SSRs are capable of very high speed switching and virtual unlimited life if used within the specified parameters.

## Terminology

## Contact materials

A variety of different contact materials have been developed for different switching applications with contact switchgears. The resulting properties and applications of the most common contact materials are shown in Table 1.1. Since there is no "ideal contact," the material is usually determined by the most important required properties.
Hard gold plated contacts have a 2-3 $\mu \mathrm{m}$ thick, non-porous gold layer. They are mostly used to switch small voltages and currents in the signal load range and in atmospheres containing sulphur. Since underneath the gold layer there is usually a contact material suitable for switching high-voltage loads, interface modules with hard gold plated contacts can be used as so-called universal relay modules. However, it must be considered that once the module has been used beyond the capacity limit of the gold plating, the module can no longer be used in a switching range below the capacity limit. The capacity limit indicates the current or voltage value that can be switched without destroying the gold layer.

## Storage temperature

Temperature range in which the module may be stored without dew formation.

## Cable lengths

If long cables (e.g. over 40 m for rated control voltage of 230 VAC) are needed for the control circuitry of interface modules, faultess function of the products is only possible if the following factors are taken into consideration:
The permitted voltage drop on the control cable must not exceed $5 \%$ of the rated voltage. The higher the rated control voltage and the larger the cross section of the control cable, the longer the control cables that can be used. When increasing the rated control voltage of interface modules with AC activation, the effect of the cable capacitance must be considered.
Upon opening of the control circuit, there is a potential difference between the cables, depending on the cable length. The single conductors, which have a different voltage, act as capacitors. Due to this capacitance, current flows through the interface module even if the control circuit is open. If this current is high enough, it is possible that the relay picks up or the status indication remains on. The following measures can be taken against the interference of cable capacitance:

- Use of DC voltage as control voltage
- Use of a lower control voltage
- Parallel connection of resistive or capacitive (low loss) additional consumer units


## Creepage \& clearance distances

The creepage \& clearance distances for interface modules are calculated on the basis of VDE standard 0160 (pr EN 50178). The clearance distance is the shortest distance between two points, measured along a tightened thread. The creepage distance is the shortest distance between two points along an insulating surface along which a current can flow. A join between two parts of insulation material is considered part of the insulation material surface.

## Maximum switching frequency

Maximum possible number of switching operations per time unit ( $5 \mathrm{1} / \mathrm{s}, 360 \mathrm{1} / \mathrm{h}$ ) that can be performed during operation. The relay can only be operated a short time at its maximum switching frequency, as otherwise its life will be drastically shortened due to mechanical and thermal influences. With semiconductor couplings, it must be noted that the maximum switching frequency refers to ohmic loads. When switching inductive loads, the maximum switching frequency must be reduced. The inductive turn-off energy can, if the frequency is high enough, lead to capacity overload of the internal protection of the device, thus destroying it.

## Mechanical life

Number of operations without contact load during which the relay remains functional.

## Rated control voltage

Indicates the voltage on the load side and, depending on the execution of the interface module; can be a DC or AC voltage value.

## Bouncing time

The closing of electrical contacts generates an impulse that causes the contacts to open and close several times over a certain period of time (bouncing time). This impulse, which reduces the kinetic energy of the movable contact part, is called bouncing. Bouncing reduces the life of the contact, since the load is switched during each bounce.

## Terminology

| Contact material | Corrosio Sulphur | due to oxidation | Typical properties | Typical applications | Application area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pure gold | no | no | Best corrosion resistance, rarely used as solid metal since it is too soft, danger of cold bonding | In layers with a thickness of $\_<1 \mu \mathrm{~m}$ only for gold-plating of bearings. Economical contact protection in atmospheres containing sulphur at a layer thickness of | at least 2-3 $\mu \mathrm{m}$ |
| Hard gold AuNi1 <br> AuCo1 | no | no | Very good corrosion resistance, low and constant contact resistance at low levels of switching power | Dry switching circuits, use in atmospheres containing sulphur, at least $2-3 \mu \mathrm{~m}$ | $\begin{aligned} & \mu \mathrm{V} . . .60 \mathrm{~V} \\ & \mu \mathrm{~A} \ldots . . .2 \mathrm{~A} \end{aligned}$ |
| Rhodium | no | no | As a galvanised coating (0.1... $1 \mu \mathrm{~m}$ ) mainly on wedges of reed contacts | Small loads at high switching frequencies, long contact life | $\begin{aligned} & \mu \mathrm{V} . . .150 \mathrm{~V} \\ & \mu \mathrm{~A} . . .2 \mathrm{~A} \end{aligned}$ |
| Gold-silver AuAg10 | no | no | Low and constant contact resistance at low levels of switching power | Dry switching circuits, measuring circuits, incoherent speech channels | $\begin{aligned} & \mu \vee . .60 \mathrm{~V} \\ & \mu \mathrm{~A} . . .0 .3 \mathrm{~A} \end{aligned}$ |
| Gold-nickel AuNi5 | no | low | In a broad load range, no contact material migration; small contact resistance; light arcs occur easily; at low levels of switching power, higher number of cycles and contact follow; interference due to fretting debris possible; very expensiv | Use in small and medium voltage and current ranges | $\begin{aligned} & 100 \mathrm{mV} . . .60 \mathrm{~V} \\ & 1 \mathrm{~mA} . . .0 .3 \mathrm{~A} \end{aligned}$ |
| Silver palladium AgPd30 | no | no | Better resistance to oxidation than silver; harder; lower burn; expensive; constant contact resistance | Signal lines with medium loads, coherent speech channels | $\begin{aligned} & >1 \mathrm{~V} \\ & 1 \mathrm{~mA} \ldots . .1 \mathrm{~A} \end{aligned}$ |
| Fine-grain silver AgNio, 15 | yes | no | Higher mechanical strength; lower bonding tendency and higher burn resistance than silver; relatively small contact resistance | Universal use at medium loads that are higher than pure silver | $\begin{aligned} & >12 \mathrm{~V} \\ & 1 \mathrm{~mA} \ldots . .1 \mathrm{~A} \end{aligned}$ |
| Hard silver AgCu3 | yes | When switching | Higher mechanical strength; lower bonding tendency and higher burn resistanc ethan fine-grained silver but higher contact resistance | Use at medium loads | $\begin{aligned} & >12 \mathrm{~V} \\ & >10 \mathrm{~mA} \ldots 10 \mathrm{~A} \end{aligned}$ |
| Silver-nickel AgNi 90/10 | yes | no | Higher burn resistance; lower bondin tendency; higher contact resistance | Especially suited for switching inductive loads | $\begin{aligned} & >17 \mathrm{~V} \\ & >50 \mathrm{~mA} \end{aligned}$ |
| Silvercadmium oxide AgCdO10 | yes | no | Low bonding tendency. high burn resistance at high levels of switching power | Switching circuits with medium to high loads, DC circuits | $\begin{aligned} & >12 \mathrm{~V} \\ & >100 \mathrm{~mA} \end{aligned}$ |
| Silver-tin oxide AgSnO10 | yes | no | Low bonding tendency. very high burn resistance at high levels of switching power, minor contact material migration | Switching circuits with high switch-off/ switch-on loads, DC circuits | $\begin{aligned} & >17 \mathrm{~V} \\ & >50 \mathrm{~mA} \end{aligned}$ |
| Tungsten W | no | yes | Highest melting point, high resistance to burn; for high switching frequency at low duty cycles | Switching circuits with the highest switchoff / switch-on loads | $\begin{aligned} & >60 \mathrm{~V} \\ & >1 \mathrm{~A} \end{aligned}$ |

## Dropout voltage

Indicates the maximum control voltage at which a relay will release to its de-energised position.

## Switching power

Sum of switching current and switching voltage. With relay couplings, care must be taken not to exceed the upper or lower limit of the switching voltage, switching current, or switching power. When switching DC, the switching power is determined by the DC load limit curve.

## Switching voltage

Voltage occurring between the contacts or at the switching transistor, prior to closing or after opening the circuit, once transient phenomena has subsided.

## Switching current

Current that can be switched by the relay contact or switching transistor under normal operating conditions. For semiconductor couplings, a reduction of the switching current for reasons of
power loss due to ambient temperature might be necessary (derating). The appropriate current and temperature values can be found in the relevant de-rating diagram with each product.

## Switching capacity

Current that can be switched on and off by an interface module under predetermined conditions. For the MicroCompact relay couplings, these conditions are defined by usage categories compliant with EN 60947-5-1:

| Usage category | Type of <br> current | Typical <br> application case |
| :--- | :--- | :--- |
| AC-12 | Alternating | Switching resistance <br> loads |
| AC-15 | Alternating | Switching solenoids |
| DC-12 | Direct | Switching resistance <br> loads |
| DC-13 | Switching solenoids |  |

In order to achieve a life exceeding the 6050 switching cycles required in the standard with usage categories AC-15 and DC-13, it is vital that inductive loads have a suitable suppression unit.

## Terminology

## Screw terminals

The screw terminals used in the Lutze interface modules allow the connection of fine-strand conductors with a cross section of up to $2.5 \mathrm{~mm}^{2}$ and one-wire conductors with a cross section of up to $4 \mathrm{~mm}^{2}$. They comply with EN 60999 and feature captive screws. A regular screwdriver (blade $3.5 \times 0.8 \mathrm{~mm}$ ) is needed for activation.

## Protection class compliant with DIN 40050

The protection class of a device defines the protection against touching and against penetration of solid particles and water. Internationally, the protection class is expressed as a letter and number combination ( $\mathrm{IP}=$ International Protection). The first digit defines protection against touching and foreign particles; the second digit indicates the water protection grade.

## Protection circuits

With interface modules, a distinction is made between input and output side protection circuits. The protection circuit on the input side can have the following protective features:

- Reverse-connect protection by means of polarity reversal protection diodes or bridge rectifiers
- Protection against power surges at electronic inputs, e. g. through varistors
Protection circuits on the output side are usually used only with semiconductor couplings for intrinsic protection of the electronic switching element. They certainly do not replace the mandatory protective circuits for inductive loads. With relay couplings, internal contact protection has been omitted, since ideal suppression is not possible due to the wide switching capacity range, and suppression must take place at the source of the interference.


## Safe isolation

Safe electrical isolation guarantees potential-free transmission of signals between different machine parts and systems. According to VDE 0160 (prEN 50178), safe isolation is required for extra-low voltage circuits (SELV or PELV) and other current circuits. It is made possible through design measures, double or reinforced insulation of the air and creep distances, as well as through the use of special elements that meet safe isolation requirements. The need for special elements is met in Lutze interface modules through the use of the following disconnect elements:

- Relays, tested according to VDE 0106
- Optocouplers compliant with VDE 0884


## Overvoltage category

Determines the withstand surge voltages for the respective rated power cable voltages for AC voltage systems compliant with IEC 38. For LUTZE interface modules. overvoltage category III compliant with DIN VDE 0110 applies Overvoltage category III is defined as follows:
"Operating equipment of overvoltage category III is intended for use in systems, or parts thereof, where lightning overvoltages need not taken into account, but which are subject to special requirements with regard to the safety and availability of the operating equipment or the networks depending on it ..."

## Ambient temperature

Temperature range in which the module can be operated under specified operating conditions. Dew formation is not permissible. The contamination of a device's air and creep distances over its service life must be taken into account through its degree of contamination, as defined by VDE 0160 (prEN 50178). Degree of contamination 1 to 4 defined as follows:

1. No or only dry, non-conducting contamination occurs. The contamination has no influence.
2. Normally, only non-conducting contamination occurs. Occasionally, however, brief conductance can be expected due to dew formation when the device is not in operation.
3.Conducting or dry, non-conducting contamination occurs, which becomes conductive since dew formation is expected.
3. The contamination results in permanent conductivity, e.g. caused by conductive dust, rain, or snow.

## Contact specification

| Symbol | Configuration <br> Make contact <br> (normally open) | NO |
| ---: | :--- | :--- |
| 4 | Brake contact <br> (normally closed) | NC |
| 4 | Changeover | CO |
| 4 |  |  |

## Terminal marking

European standard EN 50005 recommends the following numbering for the marking of relay terminals:

- . 1 for common contact terminals (e.g. 11, 21, 31 ...)
- 2 for NC contact terminals (e.g. 12, 22, 32 ...)
- . 4 for NO contact terminals (e.g. 14, 24, 34 ...)
- A1, A2, for control input


number
configuration relay with 4 poles number


## United Kingdom

LÜTZE Ltd.
Unit 3 Sandy Hill Park
Sandy Way, Amington
Tamworth, Staffs, B77 4DU
Tel.: + 44 (0) 1827 31333-0
Fax: +44 (0)1827 31333-2
sales.gb@lutze.co.uk

## Lütze systems

 for highest industrial standards:- Prepopulated C-track systems
> Lütze-LSC-wiring systems for all standard control panels
- Powerful module and interface technology

Reliable suppression technology

Efficient power supplies

Automation systems for harsh environments

## Germany

Friedrich Lütze GmbH \& Co. KG
Postfach 1224 (PLZ 71366)
Bruckwiesenstraße 17-19
D-71384 Weinstadt
Tel.: +49 (0)71516053-0
Fax: +49 (0)7151 6053-277(-288)
info@luetze.de

## USA

LUTZE INC.
13330 South Ridge Drive
Charlotte, NC 28273
Tel.: +1 (704) 504-0222
Fax: +1 (704) 504 -0223
info @lutze.com

## Österreich

LÜTZE Elektrotechnische
Erzeugnisse Ges.m.b.H.
Tel.: +43 (0) 125752 52-0
Fax: +43 (0)1 $2575252-20$
office@luetze.at

## Schweiz

LÜTZE AG
Tel.: +41 (0)55 4502323
Fax: +41 (0)55 4502313
info@luetze.ch

## France

LUTZE S.A.
Tél.: + 33 (0) 134187700
Fax: +33 (0)1 34181844
lutze@lutze.fr

## España

LUTZE, S.L.
Tel.: +34 932857480
Fax: +34 932857481
info@lutze.es


[^0]:    Derating
    I (A) A
    

